Matrix metalloproteinase-13 is regulated by toll-like receptor-9 in colorectal cancer cells and mediates cellular migration

Oncol Lett. 2011 May;2(3):483-488. doi: 10.3892/ol.2011.276. Epub 2011 Mar 21.

Abstract

Matrix metalloproteinases (MMPs) are associated with cancer cell invasion and metastasis, and are currently the most prominent proteases associated with tumorigenesis. In particular, abundant expression of MMP-13 in colorectal cancer (CRC) is correlated with poor survival and the existence of distant metastasis. As suggested by recent in vitro studies, MMP-13 expression is regulated in a toll-like receptor (TLR)-9-dependent manner. In this study, we quantified the expression of MMP-13, TLR-9 and second messengers of the TLR signal transduction in CRC cells compared to colonic fibroblasts by RT-PCR. Furthermore, the effects of a selective TLR-9 stimulation on the expression of MMP-13 in CRC cells and colonic fibroblasts were analyzed. MMP-13 and TLR-9 as well as associated second messengers were simultaneously up-regulated in LS174 and SW620 cells compared to fibroblasts. Selective TLR-9 agonism with CpG oligonucleotides led to a significant increase in MMP-13 gene expression after 12 h of incubation in LS174 cells and after 12 and 24 h in SW620 cells, but not when using GpC oligonucleotides as a control substance. By contrast, MMP-13 gene expression remained unchanged in colonic fibroblasts following treatment with CpG or GpC oligonucleotides. The effects of selective MMP-13 inhibition on cellular migration were analyzed in Boyden chamber experiments. In the presence of 10 and 20 μM of the specific MMP-13 inhibitor, CL-82198, migration of the LS174 cells was significantly reduced by 55 and 52%, respectively, compared to untreated cells. In conclusion, the results of this study provide evidence of the TLR-9-dependent regulation of MMP-13 in CRC cells, but not in colonic fibroblasts. Since the specific inhibition of MMP-13 significantly reduces the migration of LS174 cells, selective MMP-13 inhibition may be a promising therapeutic strategy in CRC.