Effect of gold immersion time on the electrochemical migration property of electroless nickel/immersion gold surface finishing

J Nanosci Nanotechnol. 2012 Apr;12(4):3506-10. doi: 10.1166/jnn.2012.5617.

Abstract

In this study, the electrochemical performance of an electroless nickel/immersion gold (ENIG) surface finish was evaluated as a function of the Au immersion time by the water immersion migration test. As the Au plating time increased, the electroless nickel phosphorous (EN-P) changed from amorphous to crystalline and then increased in crystallinity. X-ray diffraction (XRD) was used to evaluate the crystallinity of the plating layer. The electrical resistance of the electrodes was tracked as the sample was immersed in water with a 5 V bias. The microstructures of the electrodes after the electrochemical migration test were observed by using secondary electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As the Au immersion time increased, the EN-P's crystallinity and Au thickness increased. This enhanced the electrochemical migration protection of the surface finish layer.