Investigation of hole transport layer in relation to the properties of organic solar cells

J Nanosci Nanotechnol. 2012 Apr;12(4):3460-3. doi: 10.1166/jnn.2012.5555.

Abstract

Organic solar cells based on a blend of copper phthalocyanine and bulk fullerene are fabricated with a double hole transport layer system. The double hole transport layer was composed of poly3,4-ethylenedioxythiophene:polystyrenesulfonate, and copper phthalocyanine and inserted between the anode and active layer. The double hole transport layer system utilizes advantages of both layer. The poly3,4-ethylenedioxythiophene:polystyrenesulfonate layer modifies the surface morphology of the ITO anode and the copper phthalocyanine layer enhances hole transport. In order to enhance the conductivity of the modification layer, the optimal amount of glycerol is doped into poly3,4-ethylenedioxythiophene:polystyrenesulfonate. Furthermore, the photovoltaic characteristics are further improved. Insertion of the double hole transport layer with a 4 nm-thick copper phthalocyanine layer resulted in open circuit voltage, short current, and power conversion efficiency as high as 0.46 V, 8.8 mA/cm2 and 1.37%, respectively.