Enhanced performance of TiO2 nanoparticle and aerogel composite electrode for dye sensitized solar cell

J Nanosci Nanotechnol. 2012 Apr;12(4):3059-65. doi: 10.1166/jnn.2012.5846.

Abstract

To evaluate the effects of specific surface area to the photocurrent conversion efficiency of dye-sensitized solar cell (DSC), we adopted TiO2 aerogel (TA)/nanoparticle (TP) composite as a photoelectrode. We prepared three types of photoelectrodes, TPs, TAs, and TATPs (1:1 TAs and TPs composite photoelectrode). The performance of TATP composite electrode was compared with that of TP and TAs. TATPs showed the improved cell efficiency, more than 0.5%, compared with a reference TPs below 15 micrometer thickness. Although the introduction of TAs increases the specific surface area for the dye adsorption, DSC composed of only TAs does not show the best efficiency result due to the crack generation. In conclusion, to produce the best photocurrent conversion efficiency, the high specific surface area of TiO2 photoelectrode for high dye adsorption should be balanced with proper control of the good electron transfer path.