Reductive amination of glutaraldehyde 2,4-dinitrophenylhydrazone using 2-picoline borane and high-performance liquid chromatographic analysis

Analyst. 2012 Sep 21;137(18):4274-9. doi: 10.1039/c2an35230c. Epub 2012 Jul 30.

Abstract

A typical method for the measurement of glutaraldehyde (GLA) employs 2,4-dinitrophenylhydrazine (DNPH) to form GLA-DNPhydrazone derivatives. However, this method is subject to analytical errors because GLA-DNPhydrazone is a quaternary bis-derivative and forms three geometric isomers (E-E, E-Z and Z-Z) as a result of the two C[double bond, length as m-dash]N double bonds. To overcome this issue, a method for transforming the C[double bond, length as m-dash]N double bond into a C-N single bond, using reductive amination of DNPhydrazone derivatives, has been applied. The amination reaction of GLA-DNPhydrazones with 2-picoline borane is accelerated with catalytic amounts of acid and is completed within 10 minutes in the presence of 100 mmol L(-1) phosphoric acid. Reduction of GLA-DNPhydrazone by 2-picoline borane is unique and results in the formation of N-(2,4-dinitrophenyl)-1-piperidinamine (DNPPA). NMR and LC-APCI-MS data confirmed the product identification. DNPPA is very stable and did not change when stored for at least four weeks at room temperature. DNPPA has excellent solubility of 14.6 g L(-1) at 20 °C in acetonitrile. The absorption maximum wavelength and the molar absorptivity of DNPPA were 351 nm and 4.2 × 10(4) L mol(-1) cm(-1) respectively. Complete separation between the reduced forms of C1-C10 aldehyde DNPhydrazones, including DNPPA, can be achieved by operating the reversed-phase high-performance liquid chromatograph at 351 nm in gradient mode using a C18 amide column. The reductive amination method for GLA overcomes analytical errors caused by E-E, E-Z and Z-Z geometrical isomers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amination
  • Chromatography, High Pressure Liquid*
  • Glutaral / analysis*
  • Glutaral / chemistry*
  • Hydrazones / chemistry*

Substances

  • 2,4-dinitrophenylhydrazone
  • Hydrazones
  • Glutaral