A study of time harmonic guided Lamb waves and their caustics in composite plates

Ultrasonics. 2013 Jan;53(1):283-93. doi: 10.1016/j.ultras.2012.06.012. Epub 2012 Jul 13.

Abstract

Spatial steady-state Lamb wave propagation in an anisotropic composite plate excited by harmonic surface sources is modeled using a Green's matrix representation in a frequency-wavenumber domain. An approach based on a residue integration technique for two dimensional wavenumber integrals for the computation of displacements outside an excitation source is presented in this paper. In the far-field zone of the excitation source, the method of stationary phase is used, which gives an asymptotic expansion of the displacement vector as a sum of cylindrical waves. Near caustic directions, a far-field solution is computed in terms of Airy functions. The results obtained applying residue integration technique and asymptotic expansion are found to be coinciding with the results of the computation by using the adaptive quadratures. Moreover, these approaches agree well with experimental data. Then, the advantages and disadvantages of the various methods applied for modeling of Lamb wave propagation are discussed in this paper. Focussing and other properties of Lamb waves are studied using numerical examples.