Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+

J Phys Chem A. 2012 Aug 23;116(33):8464-74. doi: 10.1021/jp301337f. Epub 2012 Aug 14.

Abstract

Lu(3)Al(5)O(12) (LuAG) doped with Ce(3+) is a promising scintillator material with a high density and a fast response time. The light output under X-ray or γ-ray excitation is, however, well below the theoretical limit. In this paper the influence of codoping with Tb(3+) is investigated with the aim to increase the light output. High resolution spectra of singly doped LuAG (with Ce(3+) or Tb(3+)) are reported and provide insight into the energy level structure of the two ions in LuAG. For Ce(3+) zero-phonon lines and vibronic structure are observed for the two lowest energy 5d bands and the Stokes' shift (2 350 cm(-1)) and Huang-Rhys coupling parameter (S = 9) have been determined. Tb(3+) 4f-5d transitions to the high spin (HS) and low spin (LS) states are observed (including a zero-phonon line and vibrational structure for the high spin state). The HS-LS splitting of 5400 cm(-1) is smaller than usually observed and is explained by a reduction of the 5d-4f exchange coupling parameter J by covalency. Upon replacing the smaller Lu(3+) ion with the larger Tb(3+) ion, the crystal field splitting for the lowest 5d states increases, causing the lowest 5d state to shift below the (5)D(4) state of Tb(3+) and allowing for efficient energy transfer from Tb(3+) to Ce(3+) down to the lowest temperatures. Luminescence decay measurements confirm efficient energy transfer from Tb(3+) to Ce(3+) and provide a qualitative understanding of the energy transfer process. Co-doping with Tb(3+) does not result in the desired increase in light output, and an explanation based on electron trapping in defects is discussed.

MeSH terms

  • Aluminum Oxide / chemistry*
  • Cerium / chemistry*
  • Energy Transfer*
  • Luminescence*
  • Luminescent Measurements
  • Lutetium / chemistry*
  • Terbium / chemistry*

Substances

  • Terbium
  • Cerium
  • Lutetium
  • Aluminum Oxide