Low-frequency fluctuation in continuous real-time feedback of finger force: a new paradigm for sustained attention

Neurosci Bull. 2012 Aug;28(4):456-67. doi: 10.1007/s12264-012-1254-2.

Abstract

Objective: Behavioral studies have suggested a low-frequency (0.05 Hz) fluctuation of sustained attention on the basis of the intra-individual variability of reaction-time. Conventional task designs for functional magnetic resonance imaging (fMRI) studies are not appropriate for frequency analysis. The present study aimed to propose a new paradigm, real-time finger force feedback (RT-FFF), to study the brain mechanisms of sustained attention and neurofeedback.

Methods: We compared the low-frequency fluctuations in both behavioral and fMRI data from 38 healthy adults (19 males; mean age, 22.3 years). Two fMRI sessions, in RT-FFF and sham finger force feedback (S-FFF) states, were acquired (TR 2 s, Siemens Trio 3-Tesla scanner, 8 min each, counter-balanced). Behavioral data of finger force were obtained simultaneously at a sampling rate of 250 Hz.

Results: Frequency analysis of the behavioral data showed lower amplitude in the low-frequency band (0.004-0.104 Hz) but higher amplitude in the high-frequency band (27.02-125 Hz) in the RT-FFF than the S-FFF states. The mean finger force was not significantly different between the two states. fMRI data analysis showed higher fractional amplitude of low-frequency fluctuation (fALFF) in the S-FFF than in the RT-FFF state in the visual cortex, but higher fALFF in RT-FFF than S-FFF in the middle frontal gyrus, the superior frontal gyrus, and the default mode network.

Conclusion: The behavioral results suggest that the proposed paradigm may provide a new approach to studies of sustained attention. The fMRI results suggest that a distributed network including visual, motor, attentional, and default mode networks may be involved in sustained attention and/or real-time feedback. This paradigm may be helpful for future studies on deficits of attention, such as attention deficit hyperactivity disorder and mild traumatic brain injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Attention / physiology*
  • Brain / physiology*
  • Brain Mapping*
  • Feedback
  • Female
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Magnetic Resonance Imaging / methods*
  • Male
  • Neuropsychological Tests
  • Reaction Time
  • Rest / physiology*
  • Time Factors
  • Young Adult