Using functional genomics to identify drug targets: a Dupuytren's disease example

Methods Mol Biol. 2012:910:15-31. doi: 10.1007/978-1-61779-965-5_2.

Abstract

Research into the molecular mechanism of Dupuytren's disease (DD) illustrates all the problems common to drug discovery in orphan diseases, but also in more commonly investigated ailments. Current findings characterize DD as a disease with complex molecular pathology, with changes in expression of multiple genes and proteins as well as many contributing risk factors. Some of the observed changes include genes and proteins that have been identified in a number of other pathological processes, such as TGF-β, some which may be more specific to DD, such as ADAM12, and undoubtedly also some that have yet to be discovered in future studies. When all these results are taken into consideration, it can be deduced that DD is an end result of several pathological processes that can have many points of origin, and probably involves several subtypes that give rise to sufficiently similar clinical symptoms to be unified under a single medical term. Such breadth of view has become possible with the advent of functional genomics methods and system-wide overview of the molecular processes, which highlight molecular players and processes that might not be intuitively obvious from symptoms, as is the case with the observed parallels with wound-healing processes. As functional genomics methods allow researchers to compile a more complete image of the molecular mechanisms involved in DD pathogenesis, they also help to propose new drug targets that can be employed to develop an effective pharmacological treatment for DD. Identification of key molecular players in DD has already benefited from the integration of functional genomics and biocomputational methods, and such approach may reveal new ways how we can interfere with the emergence of the DD phenotype.

MeSH terms

  • Drug Discovery / methods*
  • Dupuytren Contracture / drug therapy*
  • Dupuytren Contracture / genetics*
  • Dupuytren Contracture / metabolism
  • Genomics*
  • Humans
  • Molecular Targeted Therapy*
  • Phenotype