Synthesis of short cationic antimicrobial peptidomimetics containing arginine analogues

J Pept Sci. 2012 Sep;18(9):567-78. doi: 10.1002/psc.2435. Epub 2012 Jul 17.

Abstract

Worldwide efforts are underway to develop new antimicrobial agents against bacterial resistance. To identify new compounds with a good antimicrobial profile, we designed and synthesized two series of small cationic antimicrobial peptidomimetics (1-8) containing unusual arginine mimetics (to introduce cationic charges) and several aromatic amino acids (bulky moieties to improve lipophilicity). Both series were screened for in vitro antibacterial activity against a representative panel of Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis) and Gram-negative (Escherichia coli and Klebsiella pneumoniae) bacterial strains, and Candida albicans. The biological screening showed that peptidomimetics containing tryptophan residues are endowed with the best antimicrobial activity against S. aureus and S. epidermidis in respect to the other synthesized derivatives (MIC values range 7.5-50 µg/ml). Moreover, small antimicrobial peptidomimetics derivatives 2 and 5 showed an appreciable activity against the tested Gram-negative bacteria and C. albicans. The most active compounds (1-2 and 5-6) have been tested against Gram-positive established biofilm, too. Results showed that the biofilm inhibitory concentration values of these compounds were never up to 200 µg/ml. The replacement of tryptophan with phenylalanine or tyrosine resulted in considerable loss of the antibacterial action (compounds 3-4 and 7-8) against both Gram-positive and Gram-negative bacterial strains. Furthermore, by evaluating hemolytic activity, the synthesized compounds did not reveal cytotoxic activities, except for compound 5.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Infective Agents / chemical synthesis*
  • Anti-Infective Agents / chemistry
  • Anti-Infective Agents / pharmacology*
  • Arginine / analogs & derivatives*
  • Arginine / chemistry*
  • Biofilms / drug effects
  • Candida albicans / drug effects
  • Escherichia coli / drug effects
  • Gram-Negative Bacteria / drug effects
  • Klebsiella pneumoniae / drug effects
  • Microbial Sensitivity Tests
  • Peptidomimetics / chemical synthesis*
  • Peptidomimetics / chemistry
  • Peptidomimetics / pharmacology*
  • Staphylococcus aureus / drug effects
  • Structure-Activity Relationship

Substances

  • Anti-Infective Agents
  • Peptidomimetics
  • Arginine