Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols

J Phys Chem B. 2013 Feb 14;117(6):1556-62. doi: 10.1021/jp304044w. Epub 2012 Aug 3.

Abstract

TiO(2) and TiO(2)/Er(3+) nanoparticulate sols were obtained by the colloidal sol-gel route. Thanks to the combination of three optical techniques (laser diffraction, LD, dynamic light scattering, DLS, and multiple light scattering, MLS), the peptization time was quantified, demonstrating that erbium(III) ions retard the process. The isoelectric point of TiO(2) shifts up to higher pH's when Er(3+) ions are present, which suggests that they are adsorbed onto the surface of the TiO(2) nanoparticles. Moreover, the viscosity of the sols increases when the erbium(III) amount increases. The xerogels obtained from each sol were characterized by XRD and HRTEM, obtaining in all cases anatase as the major phase, although traces of brookite were also present. In the EPD experiments, the addition of ethanol was necessary to reduce the water hydrolysis and facilitate the drying process. As a result, transparent thin films were obtained at short times and low current densities and opal films for larger current densities and deposition times; in addition, the thickness, measured by ellipsometry, increased gradually, but the refractive index did not change significantly (1.9-2). The topography profile of the films and the particle size were obtained by atomic force microscopy (AFM), giving similar values to those measured by DLS, indicating that the addition of ethanol helps to maintain stabilization without further agglomeration or sedimentation.