A Wireless, Passive Load Cell based on Magnetoelastic Resonance

Smart Mater Struct. 2012 Jul 1;21(7):075018. doi: 10.1088/0964-1726/21/7/075018. Epub 2012 Jun 14.

Abstract

A wireless, battery-less load cell was fabricated based on the resonant frequency shift of a vibrating magnetoelastic strip when exposed to an AC magnetic field. Since the vibration of the magnetoelastic strip generated a secondary field, the resonance was remotely detected with a coil. When a load was applied to a small area on the surface of the magnetoelastic strip via a circular rod applicator, the resonant frequency and amplitude decreased due to the damping on its vibration. The force sensitivity of the load cell was controlled by changing the size of the force applicator and placing the applicator at different locations on the strip's surface. Experimental results showed the force sensitivity increased with a larger applicator placing near the edge of the strip. The novelty of this load cell is not only its wireless passive nature, but also the controllability of the force sensitivity.