Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method

Opt Express. 2012 Jul 2;20(14):15286-300. doi: 10.1364/OE.20.015286.

Abstract

A mobile Rayleigh Doppler lidar based on double-edge technique is developed for mid-altitude wind observation. To reduce the systematic error, a system-level optical frequency control method is proposed and demonstrated. The emission of the seed laser at 1064 nm is used to synchronize the FPI in the optical frequency domain. A servo loop stabilizing the frequency of the seed laser is formed by measuring the absolute frequency of the second harmonic against an iodine absorption line. And, the third harmonic is used for Rayleigh lidar detection. The frequency stability is 1.6 MHz at 1064 nm over 2 minutes. A locking accuracy of 0.3 MHz at 1064 nm is realized. In comparison experiments, wind profiles from the lidar, radiosonde and European Center for Medium range Weather Forecast (ECMWF) analysis show good agreement from 8 km to 25 km. Wind observation over two months is carried out in Urumqi (42.1°N, 87.1°E), northwest of China, demonstrating the stability and robustness of the system. For the first time, quasi-zero wind layer and dynamic evolution of high-altitude tropospheric jet are observed based on Rayleigh Doppler lidar in Asia.

Publication types

  • Research Support, Non-U.S. Gov't