Morphological and rheological insights on polyimide chain entanglements for electrospinning produced fibers

J Phys Chem B. 2012 Aug 2;116(30):9082-8. doi: 10.1021/jp302957r. Epub 2012 Jul 17.

Abstract

Solution rheology and electrospinning performance of an aromatic polyimide based on 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 3,3'-dimethyl-4,4'-diaminodiphenylmethane (MMDA) was studied. Analyzing the dependence of specific viscosity on polymer concentration enabled the evaluation of the transition from semidilute unentangled to semidilute entangled regime at 18.3%. Modification of chain interactions in solution is also reflected in a sudden increase of flow energetic barrier and consistency index values from 3.56 to 10.28 kJ/mol and 0.19 to 1.09 Pa·s(n), respectively. In the concentration domain of 15-20% the relaxation time is enhanced from 0.48 to 1.07 s, as a consequence of less chain mobility, which can be associated with the elastic character of the polyimide solution, useful for obtaining fibers. Scanning electron microscopy (SEM) and polarized light microscopy (PLM) images indicate that at 25% beaded fibers are obtained, while at 30% bead-free fibers are formed having the diameter comprised between 0.56 and 0.85 μm.