Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography

Nat Commun. 2012 Jul 3:3:935. doi: 10.1038/ncomms1907.

Abstract

Fabrication of ultrasharp probes is of interest for many applications, including scanning probe microscopy and electron-stimulated patterning of surfaces. These techniques require reproducible ultrasharp metallic tips, yet the efficient and reproducible fabrication of these consumable items has remained an elusive goal. Here we describe a novel biased-probe field-directed sputter sharpening technique applicable to conductive materials, which produces nanometer and sub-nanometer sharp W, Pt-Ir and W-HfB(2) tips able to perform atomic-scale lithography on Si. Compared with traditional probes fabricated by etching or conventional sputter erosion, field-directed sputter sharpened probes have smaller radii and produce lithographic patterns 18-26% sharper with atomic-scale lithographic fidelity.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.