Selective and controlled synthesis of multiform morphologies Y2O3:Eu3+ and luminescence properties

J Nanosci Nanotechnol. 2012 Mar;12(3):2767-73. doi: 10.1166/jnn.2012.5697.

Abstract

Uniform Y2O3 nanorods, nanosheets, nanotubes and nanoshperes were controllably synthesized via an urea-based homogeneous precipitation and hydrothermal synthesis through choosing appropriate yttrium sources, the water/ethanol ratio of mixed solvents and precipitators. The nanopheres and nanotubes were obtained through homogeneous precipitation method using soluble yttrium nitrate as the yttrium source. The nanosheets and nanorods were obtained via a facile hydrothermal synthetic method using yttrium chloride and yttrium acetate as the yttrium source. During these experiments Urea and NaOH were used as precipitators and added in correct order. We also studied the spectroscopic properties of Y2O3:Eu3+ phosphor. The Eu3+ ion mainly shows its characteristic red (611 nm, 5D0 --> 7F2) emissions in all kinds of morphologies Y2O3:Eu3+ phosphor, but emission intensity are different. It can be explain from the viewpoint of their different absorption properties closely related to their micro-morphologies.