Influence of cell fabrication procedure on the performance of the dye sensitized solar cell

J Nanosci Nanotechnol. 2012 Mar;12(3):1829-34. doi: 10.1166/jnn.2012.5196.

Abstract

The recent technological advancements of the Dye Sensitized Solar Cells (DSSCs) fabrication technology is gaining momentum as a low cost and simple fabrication technology to convert solar energy into electric energy. A systematic study of the DSSC fabrication procedure and its influence on the cell efficiency are presented in this paper. Preparation of the titanium dioxide (TiO2) layer on the working electrode was the most significant process improvement made to enhance cell efficiency. The Coatema tool was used to develop an automated TiO2 coating process, which yielded layer thicknesses with minimum micro cracks and repeatable TiO2 weight loading in the range of 8-13 microm. Secondary process improvements implemented were: vacuum drying step for the TiO2 layer, dilution ratio of the sensitized dye and sealant thickness. These optimized cell fabrication steps enhanced cell efficiencies over 200% and reduced total process time. The work in progress demonstrated higher cell efficiency slightly greater than 9% by reducing the cell size using the optimized fabrication process described in this paper. We are confident that higher efficiency cells can be fabricated with this optimized fabrication process illustrated in this paper.