High-throughput single-microparticle imaging flow analyzer

Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11630-5. doi: 10.1073/pnas.1204718109. Epub 2012 Jul 2.

Abstract

Optical microscopy is one of the most widely used diagnostic methods in scientific, industrial, and biomedical applications. However, while useful for detailed examination of a small number (< 10,000) of microscopic entities, conventional optical microscopy is incapable of statistically relevant screening of large populations (> 100,000,000) with high precision due to its low throughput and limited digital memory size. We present an automated flow-through single-particle optical microscope that overcomes this limitation by performing sensitive blur-free image acquisition and nonstop real-time image-recording and classification of microparticles during high-speed flow. This is made possible by integrating ultrafast optical imaging technology, self-focusing microfluidic technology, optoelectronic communication technology, and information technology. To show the system's utility, we demonstrate high-throughput image-based screening of budding yeast and rare breast cancer cells in blood with an unprecedented throughput of 100,000 particles/s and a record false positive rate of one in a million.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Line, Tumor
  • Diagnostic Imaging / methods*
  • Female
  • Flow Cytometry / methods*
  • High-Throughput Screening Assays / methods*
  • Humans
  • Microfluidic Analytical Techniques / methods*
  • Microscopy, Video / methods*
  • Saccharomycetales