Protein phosphatase Z modulates oxidative stress response in fungi

Fungal Genet Biol. 2012 Sep;49(9):708-16. doi: 10.1016/j.fgb.2012.06.010. Epub 2012 Jun 30.

Abstract

The genome of the filamentous fungus Aspergillus nidulans harbors the gene ppzA that codes for the catalytic subunit of protein phosphatase Z (PPZ), and the closely related opportunistic pathogen Aspergillus fumigatus encompasses a highly similar PPZ gene (phzA). When PpzA and PhzA were expressed in Saccharomyces cerevisiae or Schizosaccharomyces pombe they partially complemented the deleted phosphatases in the ppz1 or the pzh1 mutants, and they also mimicked the effect of Ppz1 overexpression in slt2 MAP kinase deficient S. cerevisiae cells. Although ppzA acted as the functional equivalent of the known PPZ enzymes its disruption in A. nidulans did not result in the expected phenotypes since it failed to affect salt tolerance or cell wall integrity. However, the inactivation of ppzA resulted in increased sensitivity to oxidizing agents like tert-butylhydroperoxide, menadione, and diamide. To demonstrate the general validity of our observations we showed that the deletion of the orthologous PPZ genes in other model organisms, such as S. cerevisiae (PPZ1) or Candida albicans (CaPPZ1) also caused oxidative stress sensitivity. Thus, our work reveals a novel function of the PPZ enzyme in A. nidulans that is conserved in very distantly related fungi.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Aspergillus nidulans / enzymology*
  • Aspergillus nidulans / genetics
  • Catalytic Domain
  • Fungal Proteins / chemistry
  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism*
  • Gene Expression
  • Molecular Sequence Data
  • Oxidative Stress*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Schizosaccharomyces / genetics
  • Schizosaccharomyces / metabolism*
  • Sequence Alignment

Substances

  • Fungal Proteins