Applications of high-resolution electrospray ionization mass spectrometry to measurements of average oxygen to carbon ratios in secondary organic aerosols

Environ Sci Technol. 2012 Aug 7;46(15):8315-24. doi: 10.1021/es3017254. Epub 2012 Jul 16.

Abstract

The applicability of high-resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in secondary organic aerosols (SOAs) was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of low-molecular-weight SOA constituents were analyzed and the corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of SOAs was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both the posive and negative modes. A correlation was found between the ratio of the ionization efficiencies in the positive (+) and negative (-) ESI modes and the octanol-water partition constant and, more importantly, the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOAs produced by oxidation of limonene and isoprene and compared them online to O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS method is comparable to that of the AMS with the added benefit of molecular identification of the aerosol constituents.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aerosols*
  • Carbon / analysis*
  • Organic Chemicals / analysis*
  • Oxygen / analysis*
  • Spectrometry, Mass, Electrospray Ionization / methods*

Substances

  • Aerosols
  • Organic Chemicals
  • Carbon
  • Oxygen