Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities

Antimicrob Agents Chemother. 2012 Sep;56(9):4771-8. doi: 10.1128/AAC.00680-12. Epub 2012 Jun 25.

Abstract

We investigated the mechanisms leading to Pseudomonas aeruginosa pan-β-lactam resistance (PBLR) development during the treatment of nosocomial infections, with a particular focus on the modification of penicillin-binding protein (PBP) profiles and imipenem, ceftazidime, and ceftolozane (former CXA-101) PBP binding affinities. For this purpose, six clonally related pairs of sequential susceptible-PBLR isolates were studied. The presence of oprD, ampD, and dacB mutations was explored by PCR followed by sequencing and the expression of ampC and efflux pump genes by real-time reverse transcription-PCR. The fluorescent penicillin Bocillin FL was used to determine PBP profiles in membrane preparations from all pairs, and 50% inhibitory concentrations (IC(50)s) of ceftolozane, ceftazidime, and imipenem were analyzed in 3 of them. Although a certain increase was noted (0 to 5 2-fold dilutions), the MICs of ceftolozane were ≤4 μg/ml in all PBLR isolates. All 6 PBLR isolates lacked OprD and overexpressed ampC and one or several efflux pumps, particularly mexB and/or mexY. Additionally, 5 of them showed modified PBP profiles, including a modified pattern (n = 1) or diminished expression (n = 1) of PBP1a and a lack of PBP4 expression (n = 4), which correlated with AmpC overexpression driven by dacB mutation. Analysis of the essential PBP IC(50)s revealed significant variation of PBP1a/b binding affinities, both within each susceptible-PBLR pair and across the different pairs. Moreover, despite the absence of significant differences in gene expression or sequence, a clear tendency toward increased PBP2 (imipenem) and PBP3 (ceftazidime, ceftolozane, imipenem) IC(50)s was noted in PBLR isolates. Thus, our results suggest that in addition to AmpC, efflux pumps, and OprD, the modification of PBP patterns appears to play a role in the in vivo emergence of PBLR strains, which still conserve certain susceptibility to the new antipseudomonal cephalosporin ceftolozane.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / metabolism*
  • Anti-Bacterial Agents / pharmacology
  • Binding Sites
  • Carbapenems / metabolism*
  • Carbapenems / pharmacology
  • Ceftazidime / metabolism*
  • Ceftazidime / pharmacology
  • Cephalosporins / metabolism*
  • Cephalosporins / pharmacology
  • Cross Infection / drug therapy
  • Cross Infection / microbiology
  • Gene Expression
  • Humans
  • Imipenem / metabolism*
  • Imipenem / pharmacology
  • Kinetics
  • Microbial Sensitivity Tests
  • Penicillin-Binding Proteins / chemistry
  • Penicillin-Binding Proteins / genetics
  • Penicillin-Binding Proteins / metabolism*
  • Protein Binding
  • Protein Isoforms / chemistry
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Pseudomonas Infections / drug therapy
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / isolation & purification
  • Pseudomonas aeruginosa / metabolism*
  • beta-Lactam Resistance / genetics

Substances

  • Anti-Bacterial Agents
  • Carbapenems
  • Cephalosporins
  • Penicillin-Binding Proteins
  • Protein Isoforms
  • ceftolozane
  • Imipenem
  • Ceftazidime