Analysis of heart rate deflection points to predict the anaerobic threshold by a computerized method

J Strength Cond Res. 2012 Jul;26(7):1967-74. doi: 10.1519/JSC.0b013e318234eb5d.

Abstract

Many studies have used the heart rate deflection points (HRDPs) during incremental exercise tests, because of their strong correlation with the anaerobic threshold. The aim of this study was to evaluate the profile of the HRDPs identified by a computerized method and compare them with ventilatory and lactate thresholds. Twenty-four professional soccer players (age, 22 ± 5 years; body mass, 74 ± 7 kg; height 177 ± 7 cm) volunteered for the study. The subjects completed a Bruce-protocol incremental treadmill exercise test to volitional fatigue. Heart rate (HR) and alveolar gas exchange were recorded continuously at ≥1 Hz during exercise testing. Subsequently, the time course of the HR was fit by a computer algorithm, and a set of lines yielding the lowest pooled residual sum of squares was chosen as the best fit. This procedure defined 2 HRDPs (HRDP1 and HRDP2). The HR break points averaged 43.9 ± 5.9 and 89.7 ± 7.5% of the VO2peak. The HRDP1 showed a poor correlation with ventilatory threshold (VT; r = 0.50), but HRDP2 was highly correlated to the respiratory compensation (RC) point (r = 0.98). Neither HRDP1 nor HRDP2 was correlated with LT1 (at VO2 = 2.26 ± 0.72 L·min(-1); r = 0.26) or LT2 (2.79 ± 0.59 L·min(-1); r = 0.49), respectively. LT1 and LT2 also were not well correlated with VT (2.93 ± 0.68 L·min(-1); r = 0.20) or RC (3.82 ± 0.60 L·min(-1); r = 0.58), respectively. Although the HR deflection points were not correlated to LT, HRDP2 could be identified in all the subjects and was strongly correlated with RC, consistent with a relationship to cardiorespiratory fatigue and endurance performance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Anaerobic Threshold*
  • Exercise Test
  • Heart Rate*
  • Humans
  • Lactic Acid / blood
  • Male
  • Numerical Analysis, Computer-Assisted*
  • Physical Endurance / physiology*
  • Pulmonary Gas Exchange
  • Soccer / physiology
  • Young Adult

Substances

  • Lactic Acid