D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1

J Clin Immunol. 2012 Dec;32(6):1360-71. doi: 10.1007/s10875-012-9722-z. Epub 2012 Jun 19.

Abstract

Purpose: Osteoclasts (OCs) are multinucleated giant cells that resorb bone matrix. Accelerated bone destruction by OCs might cause several metabolic bone-related diseases, such as osteoporosis and inflammatory bone loss. D-pinitol (3-O-methyl-D-chiro-inositol) is a prominent component of dietary legumes and is actively converted to D-chiro-inositol, which is a putative insulin-like mediator. In this study, we analyzed the effect of D-chiro-inositol on OC differentiation.

Methods: To analyze the role of D-chiro-inositol on OC differentiation, we examined OC differentiation by the three types of osteoclastogenesis cultures with tartrate-resistant acid phosphatase (TRAP) staining and solution assay. Then, we carried out cell fusion assay with purified TRAP(+) mononuclear OC precursors. Finally, we analyzed the effect of D-chiro-inositol on OC maker expression in response to the regulation of nuclear factor of activated T cells c1 (NFATc1).

Results: We demonstrated that D-chiro-inositol acts as an inhibitor of receptor activator of NF-κB ligand-induced OC differentiation. The formation of multinucleated OCs by cell-cell fusion is reduced by treatment with D-chiro-inositol in a dose-dependent manner. In addition, we demonstrated that D-chiro-inositol inhibits the expression of several osteoclastogenic genes by down-regulating NFATc1.

Conclusions: We have shown that D-chiro-inositol is negatively involved in osteoclastogenesis through the inhibition of multinucleated OC formation by cell-cell fusion. The expression of NFATc1 was significantly down-regulated by D-chiro-inositol in OCs and consequently, the expression of OC marker genes was significantly reduced. Hence, these results show that D-chiro-inositol might be a good candidate to treat inflammatory bone-related diseases or secondary osteoporosis in diabetes mellitus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Cell Differentiation / drug effects
  • Cell Fusion
  • Cell Line
  • Dose-Response Relationship, Drug
  • Down-Regulation / drug effects*
  • Gene Expression / drug effects*
  • Giant Cells / drug effects*
  • Giant Cells / pathology
  • Humans
  • Inositol / analogs & derivatives
  • Inositol / pharmacology*
  • Mice
  • NFATC Transcription Factors / genetics*
  • NFATC Transcription Factors / metabolism
  • Osteoclasts / cytology
  • Osteoclasts / drug effects*
  • Osteoclasts / metabolism
  • RANK Ligand / genetics*
  • RANK Ligand / metabolism
  • Stereoisomerism

Substances

  • Biomarkers
  • NFATC Transcription Factors
  • Nfatc1 protein, mouse
  • RANK Ligand
  • Tnfsf11 protein, mouse
  • Inositol