ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains

Nat Methods. 2012 Jun 17;9(7):735-42. doi: 10.1038/nmeth.2076.

Abstract

Precise three-dimensional (3D) mapping of a large number of gene expression patterns, neuronal types and connections to an anatomical reference helps us to understand the vertebrate brain and its development. We developed the Virtual Brain Explorer (ViBE-Z), a software that automatically maps gene expression data with cellular resolution to a 3D standard larval zebrafish (Danio rerio) brain. ViBE-Z enhances the data quality through fusion and attenuation correction of multiple confocal microscope stacks per specimen and uses a fluorescent stain of cell nuclei for image registration. It automatically detects 14 predefined anatomical landmarks for aligning new data with the reference brain. ViBE-Z performs colocalization analysis in expression databases for anatomical domains or subdomains defined by any specific pattern; here we demonstrate its utility for mapping neurons of the dopaminergic system. The ViBE-Z database, atlas and software are provided via a web interface.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain* / embryology
  • Brain* / metabolism
  • Brain* / ultrastructure
  • Databases, Genetic*
  • Embryonic Development / genetics
  • Gene Expression*
  • Imaging, Three-Dimensional / methods*
  • Larva
  • Neurons / metabolism
  • Neurons / ultrastructure
  • Software
  • Zebrafish* / embryology
  • Zebrafish* / genetics