Theoretical study on the mechanism of cycloaddition reaction between silylene silylene(H₂Si=Si:) and acetaldehyde

J Mol Model. 2012 Nov;18(11):4787-95. doi: 10.1007/s00894-012-1485-1. Epub 2012 Jun 15.

Abstract

The mechanism of the cycloaddition reaction between singlet silylene silylene (H₂Si=Si:) and acetaldehyde has been investigated with CCSD(T)//MP2/6-31G* and CCSD(T)//MP2/6-31G** method, from the potential energy profile, we could predict that the reaction has three competitive dominant reaction pathways. The present rule of this reaction is that the 3p unoccupied orbital of the Si: atom in silylene silylene (H₂Si=Si:) inserts on the π orbital of acetaldehyde from oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further leads to the generation of a four-membered ring silylene (the H₂Si-O in the opposite position). In addition, the [2 + 2] cycloaddition reaction of the two π-bonds in silylene silylene and acetaldehyde generates another four-membered ring silylene (the H₂Si-O in the syn-position). Because of the unsaturated property of Si: atom in the two four-membered ring silylenes, they could further react with acetaldehyde, resulting in the generation of two spiro-heterocyclic ring compounds with Si. Simultaneously, the ring strain of the four-membered ring silylene (the H₂Si-O in the syn-position) makes it isomerize to a twisted four-membered ring product.