Chemical interactions in the layered system BCxNy/Ni(Cu)/Si, produced by CVD at high temperature

Anal Bioanal Chem. 2012 Aug;404(2):479-87. doi: 10.1007/s00216-012-6177-2. Epub 2012 Jun 13.

Abstract

Layered samples Si(100)/C/Ni/BC(x)N(y) and Si(100)/C/Cu/BC(x)N(y) were produced by physical vapor deposition of a metal (Ni, Cu, resp.) and low-pressure chemical vapor deposition of the boron carbonitride on a Si(100) substrate. Between the Si and the Ni (Cu) and on the surface of the Ni (Cu) layer, thin carbon layers were deposited, as a diffusion barrier or as a protection against oxidation, respectively. Afterwards, the surface carbon layer was removed. As precursor, trimethylamine borane and, as an auxiliary gas, H(2) and NH(3) were used, respectively. The chemical compositions of the layers and of the interfaces in between were characterized by total-reflection X-ray fluorescence spectrometry combined with near-edge X-ray absorption fine-structure spectroscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry. The application of H(2) yielded the BC(x)N(y) compound whereas the use of NH(3) led to a mixture of h-BN and graphitic carbon. At the BC(x)N(y)/metal interface, metal borides could be identified. At the relatively high synthesis temperature of 700 °C, broad regions of Cu or Ni and Si were observed between the metal layer and the substrate Si.