Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond

Appl Environ Microbiol. 2012 Aug;78(16):5805-11. doi: 10.1128/AEM.00571-12. Epub 2012 Jun 8.

Abstract

Viruses play important roles in regulating the abundance, clonal diversity, and composition of their host populations. To assess their impact on the host populations, it is essential to understand the dynamics of virus infections in the natural environment. Cyanophages often carry host-like genes, including photosynthesis genes, which maintain host photosynthesis. This implies a diurnal pattern of cyanophage infection depending on photosynthesis. Here we investigated the infection pattern of Microcystis cyanophage by following the abundances of the Ma-LMM01-type phage tail sheath gene g91 and its transcript in a natural population. The relative g91 mRNA abundance within host cells showed a peak during the daylight hours and was lowest around midnight. The phage g91 DNA copy numbers in host cell fractions, which are predicted to indicate phage replication, increased in the afternoon, followed by an increase in the free-phage fractions. In all fractions, at least 1 of 71 g91 genotypes was observed (in tested host cell, free-phage, and RNA fractions), indicating that the replication cycle of the cyanophage (i.e., injection, transcription, replication, and release of progeny phages) was occurring. Thus, Microcystis cyanophage infection occurs in a diel cycle, which may depend on the light cycle. Additionally, our data show that the abundance of mature cyanophage produced within host cells was 1 to 2 orders of magnitude greater than that of released phages, suggesting that phage production may be higher than previously reported.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteriophages / growth & development*
  • DNA, Viral / chemistry
  • DNA, Viral / genetics
  • Japan
  • Microcystis / virology*
  • Molecular Sequence Data
  • Ponds
  • Sequence Analysis, DNA
  • Transcription, Genetic
  • Viral Proteins / genetics
  • Water Microbiology*

Substances

  • DNA, Viral
  • Viral Proteins

Associated data

  • GENBANK/AB690464
  • GENBANK/AB690465
  • GENBANK/AB690466
  • GENBANK/AB690467
  • GENBANK/AB690468
  • GENBANK/AB690469
  • GENBANK/AB690470
  • GENBANK/AB690471
  • GENBANK/AB690472
  • GENBANK/AB690473
  • GENBANK/AB690474
  • GENBANK/AB690475
  • GENBANK/AB690476
  • GENBANK/AB690477
  • GENBANK/AB690478
  • GENBANK/AB690479
  • GENBANK/AB690480
  • GENBANK/AB690481
  • GENBANK/AB690482
  • GENBANK/AB690483
  • GENBANK/AB690484
  • GENBANK/AB690485
  • GENBANK/AB690486
  • GENBANK/AB690487
  • GENBANK/AB690488
  • GENBANK/AB690489
  • GENBANK/AB690490
  • GENBANK/AB690491
  • GENBANK/AB690492
  • GENBANK/AB690493
  • GENBANK/AB690494
  • GENBANK/AB690495
  • GENBANK/AB690496
  • GENBANK/AB690497
  • GENBANK/AB690498
  • GENBANK/AB690499
  • GENBANK/AB690500
  • GENBANK/AB690501
  • GENBANK/AB690502
  • GENBANK/AB690503
  • GENBANK/AB690504
  • GENBANK/AB690505
  • GENBANK/AB690506
  • GENBANK/AB690507
  • GENBANK/AB690508
  • GENBANK/AB690509
  • GENBANK/AB690510
  • GENBANK/AB690511
  • GENBANK/AB690512
  • GENBANK/AB690513
  • GENBANK/AB690514
  • GENBANK/AB690515
  • GENBANK/AB690516
  • GENBANK/AB690517
  • GENBANK/AB690518
  • GENBANK/AB690519
  • GENBANK/AB690520
  • GENBANK/AB690521
  • GENBANK/AB690522
  • GENBANK/AB690523
  • GENBANK/AB690524
  • GENBANK/AB690525
  • GENBANK/AB690526
  • GENBANK/AB690527
  • GENBANK/AB690528
  • GENBANK/AB690529
  • GENBANK/AB690530
  • GENBANK/AB690531
  • GENBANK/AB690532
  • GENBANK/AB690533
  • GENBANK/AB690534
  • GENBANK/AB690535
  • GENBANK/AB690536
  • GENBANK/AB690537
  • GENBANK/AB690538
  • GENBANK/AB690539
  • GENBANK/AB690540
  • GENBANK/AB690541
  • GENBANK/AB690542
  • GENBANK/AB690543
  • GENBANK/AB690544
  • GENBANK/AB690545
  • GENBANK/AB690546
  • GENBANK/AB690547
  • GENBANK/AB690548
  • GENBANK/AB690549
  • GENBANK/AB690550