X-ray dark-field imaging modeling

J Opt Soc Am A Opt Image Sci Vis. 2012 Jun 1;29(6):908-12. doi: 10.1364/JOSAA.29.000908.

Abstract

Dark-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals are particularly sensitive to structural variation and density fluctuation on a length scale of several tens to hundreds of nanometers, offering a unique contrast mechanism to reveal subtle structural features of an object. In this study, based on the principle of energy conservation, we develop a physical model to describe the relationship between x-ray small-angle scattering coefficients of an object and dark-field intensity images. This model can be used to reconstruct volumetric x-ray small-angle scattering images of an object using classical tomographic algorithms. We also establish a relationship between the small-angle scattering intensity and the visibility function measured with x-ray grating imaging. The numerical simulations and phantom experiments have demonstrated the accuracy and practicability of the proposed model.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Darkness*
  • Image Processing, Computer-Assisted
  • Models, Theoretical*
  • Phantoms, Imaging
  • Scattering, Small Angle*
  • Tomography, X-Ray Computed / methods*
  • X-Ray Diffraction*