Quantum continuum mechanics made simple

J Chem Phys. 2012 May 28;136(20):204115. doi: 10.1063/1.4721269.

Abstract

In this paper we further explore and develop the quantum continuum mechanics (QCM) of Tao et al. [Phys. Rev. Lett. 103, 086401 (2009)] with the aim of making it simpler to use in practice. Our simplifications relate to the non-interacting part of the QCM equations, and primarily refer to practical implementations in which the groundstate stress tensor is approximated by its Kohn-Sham (KS) version. We use the simplified approach to directly prove the exactness of QCM for one-electron systems via an orthonormal formulation. This proof sheds light on certain physical considerations contained in the QCM theory and their implication on QCM-based approximations. The one-electron proof then motivates an approximation to the QCM (exact under certain conditions) expanded on the wavefunctions of the KS equations. Particular attention is paid to the relationships between transitions from occupied to unoccupied KS orbitals and their approximations under the QCM. We also demonstrate the simplified QCM semianalytically on an example system.