Sealing SU-8 microfluidic channels using PDMS

Biomicrofluidics. 2011 Dec;5(4):46503-465038. doi: 10.1063/1.3659016. Epub 2011 Nov 9.

Abstract

A simple method of irreversibly sealing SU-8 microfluidic channels using PDMS is reported in this paper. The method is based on inducing a chemical reaction between PDMS and SU-8 by first generating amino groups on PDMS surface using N(2) plasma treatment, then allowing the amino groups to react with the residual epoxy groups on SU-8 surface at an elevated temperature. The N(2) plasma treatment of PDMS can be conducted using an ordinary plasma chamber and high purity N(2), while the residual epoxy groups on SU-8 surface can be preserved by post-exposure baking SU-8 at a temperature no higher than 95 °C. The resultant chemical bonding between PDMS and SU-8 using the method create an interface that can withstand a stress that is greater than the bulk strength of PDMS. The bond is permanent and is long-term resistant to water. The method was applied in fabricating SU-8 microfluidi-photonic integrated devices, and the obtained devices were tested to show desirable performance.