Wafer-scale mitochondrial membrane potential assays

Lab Chip. 2012 Aug 7;12(15):2719-25. doi: 10.1039/c2lc40086c. Epub 2012 May 25.

Abstract

It has been reported that mitochondrial metabolic and biophysical parameters are associated with degenerative diseases and the aging process. To evaluate these biochemical parameters, current technology requires several hundred milligrams of isolated mitochondria for functional assays. Here, we demonstrate manufacturable wafer-scale mitochondrial functional assay lab-on-a-chip devices, which require mitochondrial protein quantities three orders of magnitude less than current assays, integrated onto 4'' standard silicon wafer with new fabrication processes and materials. Membrane potential changes of isolated mitochondria from various well-established cell lines such as human HeLa cell line (Heb7A), human osteosarcoma cell line (143b) and mouse skeletal muscle tissue were investigated and compared. This second generation integrated lab-on-a-chip system developed here shows enhanced structural durability and reproducibility while increasing the sensitivity to changes in mitochondrial membrane potential by an order of magnitude as compared to first generation technologies. We envision this system to be a great candidate to substitute current mitochondrial assay systems.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Cell Line, Tumor
  • HeLa Cells
  • Humans
  • Lab-On-A-Chip Devices*
  • Membrane Potential, Mitochondrial*
  • Mice
  • Mitochondria / metabolism*
  • Muscle, Skeletal / cytology
  • Reproducibility of Results