Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men

J Bone Miner Res. 2012 Oct;27(10):2159-69. doi: 10.1002/jbmr.1666.

Abstract

Skeletal muscle and bone form highly-integrated systems that undergo significant age-related changes, but the relationships between muscle mass and trabecular versus cortical bone or trabecular microarchitecture have not been systematically investigated. Thus, we examined the association between appendicular skeletal muscle mass (ASM) relative to height squared (relative ASM) and bone parameters at several sites assessed by conventional as well as high-resolution peripheral QCT in a cohort of 272 women and 317 men aged 20 to 97 years. In women, relative ASM was associated with cortical thickness (CtTh) at the femoral neck, lumbar spine, radius, and tibia (age-and physical activity adjusted r = 0.19-0.32; all p < 0.01). Relative ASM was also associated with trabecular volumetric bone mineral density (vBMD) at the femoral neck and spine (all p < 0.05), and trabecular bone volume to tissue volume (BV/TV), number (TbN), thickness (TbTh), and separation (TbSp) at the radius (all p ≤ 0.05). In all men, relative ASM was associated with CtTh at all sites (age- and physical activity-adjusted r = 0.17-0.28; all p < 0.01). Associations between relative ASM and trabecular vBMD at the spine in men were lost after adjusting for age; however, relative ASM was associated with trabecular vBMD at the femoral neck and TbN and TbSp at the radius (all p < 0.01). We also investigated circulating factors associated with bone health that may be indicative of relative ASM and found that serum insulin-like growth factor (IGF) binding protein-2 (IGFBP-2) levels were the most robust negative predictors of relative ASM in both sexes. Collectively, these data add to the growing body of evidence supporting the highly-integrated nature of skeletal muscle and bone, and provide new insights into potential biomarkers that reflect the health of the musculoskeletal system.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Biomarkers / blood
  • Bone Density
  • Bone and Bones / anatomy & histology*
  • Female
  • Humans
  • Insulin-Like Growth Factor Binding Protein 2 / blood*
  • Male
  • Middle Aged
  • Muscle, Skeletal / anatomy & histology*
  • Organ Size
  • Young Adult

Substances

  • Biomarkers
  • IGFBP2 protein, human
  • Insulin-Like Growth Factor Binding Protein 2