Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B

Antimicrob Agents Chemother. 2012 Aug;56(8):4223-32. doi: 10.1128/AAC.06253-11. Epub 2012 May 21.

Abstract

We identified a clinical isolate of Candida glabrata (CG156) exhibiting flocculent growth and cross-resistance to fluconazole (FLC), voriconazole (VRC), and amphotericin B (AMB), with MICs of >256, >256, and 32 μg ml(-1), respectively. Sterol analysis using gas chromatography-mass spectrometry (GC-MS) revealed that CG156 was a sterol 14α-demethylase (Erg11p) mutant, wherein 14α-methylated intermediates (lanosterol was >80% of the total) were the only detectable sterols. ERG11 sequencing indicated that CG156 harbored a single-amino-acid substitution (G315D) which nullified the function of native Erg11p. In heterologous expression studies using a doxycycline-regulatable Saccharomyces cerevisiae erg11 strain, wild-type C. glabrata Erg11p fully complemented the function of S. cerevisiae sterol 14α-demethylase, restoring growth and ergosterol synthesis in recombinant yeast; mutated CG156 Erg11p did not. CG156 was culturable using sterol-free, glucose-containing yeast minimal medium ((glc)YM). However, when grown on sterol-supplemented (glc)YM (with ergosta 7,22-dienol, ergosterol, cholestanol, cholesterol, Δ(7)-cholestenol, or desmosterol), CG156 cultures exhibited shorter lag phases, reached higher cell densities, and showed alterations in cellular sterol composition. Unlike comparator isolates (harboring wild-type ERG11) that became less sensitive to FLC and VRC when cultured on sterol-supplemented (glc)YM, facultative sterol uptake by CG156 did not affect its azole-resistant phenotype. Conversely, CG156 grown using (glc)YM with ergosterol (or with ergosta 7,22-dienol) showed increased sensitivity to AMB; CG156 grown using (glc)YM with cholesterol (or with cholestanol) became more resistant (MICs of 2 and >64 μg AMB ml(-1), respectively). Our results provide insights into the consequences of sterol uptake and metabolism on growth and antifungal resistance in C. glabrata.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amphotericin B / pharmacology*
  • Antifungal Agents / pharmacology*
  • Azoles / pharmacology*
  • Base Sequence
  • Biological Transport
  • Candida glabrata / drug effects
  • Candida glabrata / genetics
  • Candida glabrata / isolation & purification
  • Candida glabrata / metabolism*
  • Drug Resistance, Multiple, Fungal / genetics*
  • Ergosterol / metabolism
  • Fluconazole / pharmacology
  • Fungal Proteins / genetics
  • Humans
  • Microbial Sensitivity Tests
  • Mutation, Missense*
  • Pyrimidines / pharmacology
  • Saccharomyces cerevisiae / metabolism
  • Sequence Analysis, DNA
  • Sterol 14-Demethylase / genetics*
  • Sterols / metabolism
  • Triazoles / pharmacology
  • Voriconazole

Substances

  • Antifungal Agents
  • Azoles
  • Fungal Proteins
  • Pyrimidines
  • Sterols
  • Triazoles
  • Amphotericin B
  • Fluconazole
  • Sterol 14-Demethylase
  • Voriconazole
  • Ergosterol