Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced li storage performances

ACS Appl Mater Interfaces. 2012 Jun 27;4(6):2999-3006. doi: 10.1021/am3003654. Epub 2012 May 29.

Abstract

A novel solvothermal process was developed for the synthesis of carbon-coated Co9S8 nanodandelions using 1-dodecanethiol as the sulfur source and the soft template. Replacing 1-dodecanethiol with sulfur powder as the sulfur source leads to the formation of 20 nm Co9S8 nanoparticles without carbon coating. When tested as LIB anode, the C@Co9S8 dandelion delivers a specific capacity of 520 mA h g(-1) at a current density of 1 A g(-1) (1.8 C) during the 50th cycle, which is much higher than that of Co9S8 nanoparticles (e.g. 338 mA h g(-1)). Furthermore, the C@Co9S8 dandelion also exhibits excellent high C-rate performance, e.g., depicts a 10th-cycle capacity of 373 mA h g(-1) at a current density of 6 A g(-1) (10.9 C), which is better than that of many reported anode materials. Such synthesis approach is attractive for the preparation of sulfide anode materials with high Li storage properties.

Publication types

  • Research Support, Non-U.S. Gov't