Cooperativity of peptidoglycan synthases active in bacterial cell elongation

Mol Microbiol. 2012 Jul;85(1):179-94. doi: 10.1111/j.1365-2958.2012.08103.x. Epub 2012 Jun 5.

Abstract

Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Wall / metabolism
  • Escherichia coli / enzymology
  • Escherichia coli / growth & development*
  • Escherichia coli Proteins / metabolism*
  • Penicillin-Binding Proteins / metabolism*
  • Peptidoglycan / biosynthesis*
  • Peptidoglycan Glycosyltransferase / metabolism*

Substances

  • Escherichia coli Proteins
  • Penicillin-Binding Proteins
  • Peptidoglycan
  • Peptidoglycan Glycosyltransferase
  • penicillin-binding protein 1A, E coli