Kasha or state selective behavior in the photochemistry of ortho-nitrobenzaldehyde?

Photochem Photobiol Sci. 2012 Aug;11(8):1313-21. doi: 10.1039/c2pp25057h. Epub 2012 May 18.

Abstract

The photochemistry of ortho-nitrobenzaldehyde dissolved in tetrahydrofuran was studied by means of femtosecond UV/Vis and IR spectroscopy. Comparison was made of the spectral and temporal signatures for ~400 nm and ~260 nm excitation. The 400 nm excitation promotes NBA to its lowest excited singlet state of nπ* character whereas for 260 nm an upper excited state of ππ* character is addressed. On the picosecond time scale, the molecule undergoes hydrogen transfer, yielding a ketene intermediate, internal conversion recovering the starting material, and intersystem crossing. Time constants and yields of these processes are virtually not affected by the excitation wavelength. For 400 nm excitation a ~100 fs decay component seen in the 260 nm experiment is absent, indicating that this component is due to a ππ* → nπ* internal conversion. In contrast to its formation, the decay of the ketene intermediate is influenced by the excitation wavelength. This can be attributed to different amounts of vibrational excitation.