Ninety-day inhalation toxicity study with a vapor grown carbon nanofiber in rats

Toxicol Sci. 2012 Aug;128(2):449-60. doi: 10.1093/toxsci/kfs172. Epub 2012 May 10.

Abstract

A subchronic inhalation toxicity study of inhaled vapor grown carbon nanofibers (CNF) (VGCF-H) was conducted in male and female Sprague Dawley rats. The CNF test sample was composed of > 99.5% carbon with virtually no catalyst metals; Brunauer, Emmett, and Teller (BET) surface area measurements of 13.8 m2/g; and mean lengths and diameters of 5.8 µm and 158 nm, respectively.Four groups of rats per sex were exposed nose-only, 6 h/day, for 5 days/week to target concentrations of 0, 0.50, 2.5, or 25 mg/m3 VGCF-H over a 90-day period and evaluated 1 day later. Assessments included conventional clinical and histopathological methods, bronchoalveolar lavage fluid (BALF) analysis, and cell proliferation (CP) studies of the terminal bronchiole (TB), alveolar duct (AD), and subpleural regions of the respiratory tract. In addition, groups of 0 and 25 mg/m3 exposed rats were evaluated at 3 months postexposure (PE). Aerosol exposures of rats to 0.54 (4.9 f/cc), 2.5 (56 f/cc), and 25 (252 f/cc) mg/m(3) of VGCF-H CNFs produced concentration-related small, detectable accumulation of extrapulmonary fibers with no adverse tissue effects. At the two highest concentrations, inflammation of the TB and AD regions of the respiratory tract was noted wherein fiber-laden alveolar macrophages had accumulated. This finding was characterized by minimal infiltrates of inflammatory cells in rats exposed to 2.5mg/m(3) CNF, inflammation along with some thickening of interstitial walls, and hypertrophy/hyperplasia of type II epithelial cells, graded as slight for the 25mg/m(3) concentration. At 3 months PE, the inflammation in the high dose was reduced. No adverse effects were observed at 0.54mg/m(3). BALF and CP endpoint increases versus controls were noted at 25mg/m(3) VGCF-H but not different from control values at 0.54 or 2.5mg/m(3). After 90 days PE, BALF biomarkers were still increased at 25mg/m(3), indicating that the inflammatory response was not fully resolved. Greater than 90% of CNF-exposed, BALF-recovered alveolar macrophages from the 25 and 2.5mg/m(3) exposure groups contained nanofibers (> 60% for 0.5mg/m(3)). A nonspecific inflammatory response was also noted in the nasal passages. The no-observed-adverse-effect level for VGCF-H nanofibers was considered to be 0.54mg/m(3) (4.9 fibers/cc) for male and female rats, based on the minimal inflammation in the terminal bronchiole and alveolar duct areas of the lungs at 2.5mg/m(3) exposures. It is noteworthy that the histopathology observations at the 2.5mg/m(3) exposure level did not correlate with the CP or BALF data at that exposure concentration. In addition, the results with CNF are compared with published findings of 90-day inhalation studies in rats with carbon nanotubes, and hypotheses are presented for potency differences based on CNT physicochemical characteristics. Finally, the (lack of) relevance of CNF for the high aspect ratio nanomaterials/fiber paradigm is discussed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Inhalation
  • Animals
  • Bronchoalveolar Lavage Fluid
  • Carbon*
  • Cell Proliferation / drug effects
  • Female
  • Male
  • Microscopy, Electron, Transmission
  • Nanofibers / toxicity*
  • Rats
  • Rats, Sprague-Dawley
  • Respiratory System / cytology
  • Respiratory System / drug effects

Substances

  • Carbon