In-situ comprehensive calibration of a tri-port nano-electro-mechanical device

Rev Sci Instrum. 2012 Apr;83(4):045005. doi: 10.1063/1.4705992.

Abstract

We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very nonlinear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the nonlinear capacitance function C(x) is derived, and the normal parameters k and m (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known dc properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of electromechanical devices.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Electric Capacitance
  • Electrical Equipment and Supplies*
  • Mechanical Phenomena*
  • Models, Theoretical
  • Nanotechnology / instrumentation*
  • Temperature