Role of intact cardiac nerves and reflex mechanisms in desensitization to catecholamines in conscious dogs

J Clin Invest. 1990 Dec;86(6):2046-53. doi: 10.1172/JCI114941.

Abstract

To study chronic catecholamine desensitization, mini-osmotic pumps were implanted subcutaneously to deliver NE, (0.5 micrograms/kg/min) or saline over 3-4 wk in dogs instrumented with left ventricular (LV) pressure gauges and arterial and left atrial pressure catheters. An acute challenge to NE (0.4 micrograms/kg/min) in intact, conscious dogs increased LV dP/dt by 1,531 +/- 208 mmHg/s before NE pumps, and by a similar amount, 1,340 +/- 166 mmHg/s, 3-4 wk after NE pumps. In contrast, an acute challenge to isoproterenol (ISO, 0.4 micrograms/kg/min) increased LV dP/dt by 5,344 +/- 532 mmHg/s before NE pumps, and significantly less (P less than 0.05; 2,425 +/- 175 mmHg/s) after NE pumps. In the presence of ganglionic and alpha 1-adrenergic blockades, NE (0.4 micrograms/kg/min) increased LV dP/dt by 3,656 +/- 468 mmHg/s before NE pumps and significantly less (P less than 0.01; 1,459 +/- 200 mmHg/s) after NE pumps. Confirming this, an acute challenge to NE (0.4 micrograms/kg/min) in dogs with arterial baroreceptor denervation increased LV dP/dt by 3,732 +/- 896 mmHg/s before NE pumps, and significantly less (P less than 0.05, 1,725 +/- 408 mmHg/s) after NE pumps. In addition, in cardiac denervated dogs, NE (0.4 micrograms/kg/min) increased LV dP/dt by 9,901 +/- 1,404 mmHg/s before NE pumps and significantly less (P less than 0.01, 2,690 +/- 306 mmHg/s) after NE pumps. Desensitization of heart rate responses to NE challenge was also more apparent in the absence of reflex mechanisms. Thus, neural reflex mechanisms play a major role in physiological expression of cardiac desensitization to catecholamines in conscious dogs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / drug effects
  • Dogs
  • Heart / innervation*
  • Heart Rate / drug effects*
  • Isoproterenol / pharmacology*
  • Myocardial Contraction / drug effects*
  • Norepinephrine / administration & dosage*
  • Pressoreceptors / physiology
  • Reflex / physiology
  • Wakefulness

Substances

  • Isoproterenol
  • Norepinephrine