Kinetics and mechanism of the racemic addition of trimethylsilyl cyanide to aldehydes catalysed by Lewis bases

Org Biomol Chem. 2012 Jun 7;10(21):4289-98. doi: 10.1039/c2ob25188d. Epub 2012 Apr 27.

Abstract

The mechanism by which four Lewis bases, triethylamine, tetrabutylammonium thiocyanate, tetrabutylammonium azide and tetrabutylammonium cyanide, catalyse the addition of trimethylsilyl cyanide to aldehydes is studied by a combination of kinetic and spectroscopic methods. The reactions can exhibit first or second order kinetics corresponding to three different reaction mechanisms. Spectroscopic evidence for the formation of hypervalent silicon species is obtained for reaction between all of the tetrabutylammonium salts and trimethylsilyl cyanide. The reactions are accelerated by the presence of water in the reaction mixture, an effect which is due to a change in the reaction mechanism from Lewis to Brønsted base catalysis. Tetrabutylammonium thiocyanate is shown to be an excellent catalyst for the synthesis of cyanohydrin trimethylsilyl ethers on a preparative scale.