Transmission of electronic effects through the {closo-1-CB9} and {closo-1-CB11} cages: apparent dissociation constants for series of [closo-1-CB9H8-1-COOH-10-X] and [closo-1-CB11H10-1-COOH-12-X] acids

Inorg Chem. 2012 May 7;51(9):5353-9. doi: 10.1021/ic300298e. Epub 2012 Apr 24.

Abstract

The apparent ionization constants pK(a)' for series of carboxylic acids [closo-1-CB(9)H(8)-1-COOH-10-X](-) (1) and [closo-1-CB(11)H(10)-1-COOH-12-X](-) (2), where X = H, I, n-C(6)H(13), (+)NMe(3), (+)N(2), (+)SMe(2), OC(5)H(11), were measured in EtOH/H(2)O (1/1, v/v) at 24 °C. Correlation analysis of the pK(a)' values using Hammett substituent constants σ(p)(X) gave the reaction constant ρ = 0.87 ± 0.04 for series 1 and ρ = 1.00 ± 0.09 for series 2. These values are higher than for derivatives of PhCH═CHCOOH (ρ = 0.70 ± 0.09 in 55% EtOH) and correspond to 56% and 65% efficiencies in transmission of electronic effects by [closo-1-CB(9)H(10)](-) (E) and [closo-1-CB(11)H(12)](-) (F), respectively, as compared to benzene (A). Experimental results were supported with DFT calculations of relative acidity for series of acids derived from A, E, and F in aqueous medium.