Symbiont-mediated insecticide resistance

Proc Natl Acad Sci U S A. 2012 May 29;109(22):8618-22. doi: 10.1073/pnas.1200231109. Epub 2012 Apr 23.

Abstract

Development of insecticide resistance has been a serious concern worldwide, whose mechanisms have been attributed to evolutionary changes in pest insect genomes such as alteration of drug target sites, up-regulation of degrading enzymes, and enhancement of drug excretion. Here, we report a previously unknown mechanism of insecticide resistance: Infection with an insecticide-degrading bacterial symbiont immediately establishes insecticide resistance in pest insects. The bean bug Riptortus pedestris and allied stinkbugs harbor mutualistic gut symbiotic bacteria of the genus Burkholderia, which are acquired by nymphal insects from environmental soil every generation. In agricultural fields, fenitrothion-degrading Burkolderia strains are present at very low densities. We demonstrated that the fenitrothion-degrading Burkholderia strains establish a specific and beneficial symbiosis with the stinkbugs and confer a resistance of the host insects against fenitrothion. Experimental applications of fenitrothion to field soils drastically enriched fenitrothion-degrading bacteria from undetectable levels to >80% of total culturable bacterial counts in the field soils, and >90% of stinkbugs reared with the enriched soil established symbiosis with fenitrothion-degrading Burkholderia. In a Japanese island where fenitrothion has been constantly applied to sugarcane fields, we identified a stinkbug population wherein the insects live on sugarcane and ≈8% of them host fenitrothion-degrading Burkholderia. Our finding suggests the possibility that the symbiont-mediated insecticide resistance may develop even in the absence of pest insects, quickly establish within a single insect generation, and potentially move around horizontally between different pest insects and other organisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Burkholderia / classification
  • Burkholderia / genetics
  • Burkholderia / metabolism*
  • Digestive System / microbiology
  • Ecosystem
  • Female
  • Fenitrothion / metabolism
  • Fenitrothion / pharmacology
  • Geography
  • Heteroptera / growth & development
  • Heteroptera / metabolism*
  • Heteroptera / microbiology
  • In Situ Hybridization, Fluorescence
  • Insecticide Resistance / genetics
  • Insecticide Resistance / physiology*
  • Insecticides / metabolism
  • Insecticides / pharmacology
  • Japan
  • Male
  • Molecular Sequence Data
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil Microbiology
  • Symbiosis / genetics
  • Symbiosis / physiology*

Substances

  • Insecticides
  • RNA, Ribosomal, 16S
  • Fenitrothion

Associated data

  • GENBANK/AB232333
  • GENBANK/AB621697
  • GENBANK/AB621698
  • GENBANK/AB621699
  • GENBANK/AB621702
  • GENBANK/AB621703
  • GENBANK/AB621704
  • GENBANK/AB622644
  • GENBANK/AB622646
  • GENBANK/AB622648
  • GENBANK/AB622649
  • GENBANK/AB622650
  • GENBANK/AB622651
  • GENBANK/AB622652
  • GENBANK/AB622653
  • GENBANK/AB622654
  • GENBANK/AB622655
  • GENBANK/AB622656
  • GENBANK/AB622657
  • GENBANK/AB622658
  • GENBANK/AB622659
  • GENBANK/AB622660
  • GENBANK/AB622661
  • GENBANK/AB622662
  • GENBANK/AB622663
  • GENBANK/AB622664
  • GENBANK/AB622665
  • GENBANK/AB622666
  • GENBANK/AB622667
  • GENBANK/AB622668
  • GENBANK/AB622669
  • GENBANK/AB622670
  • GENBANK/AB622671
  • GENBANK/AB622672
  • GENBANK/AB622673
  • GENBANK/AB622674
  • GENBANK/AB622675
  • GENBANK/AB622676
  • GENBANK/AB622677
  • GENBANK/AB622678
  • GENBANK/AB622679
  • GENBANK/AB622680
  • GENBANK/AB622681
  • GENBANK/AB622682
  • GENBANK/AB665358
  • GENBANK/AB665359
  • GENBANK/AB665360
  • GENBANK/AB665361
  • GENBANK/AB665362
  • GENBANK/AB665363