Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues

Aquat Toxicol. 2013 Feb:127:72-7. doi: 10.1016/j.aquatox.2012.03.014. Epub 2012 Apr 2.

Abstract

Chronic, low-level exposure to metals is an increasing global problem. Lead is an environmentally persistent toxin that causes many lead-related pathologies, directly affects tissues and cellular components or exerts an effect of the generation of reactive oxygen species causing a diminished level of available sulfhydryl antioxidant reserves. Cysteine is one of substrates in the synthesis of glutathione - the most important cellular antioxidant, and it may also undergo non-oxidative desulfuration that produces compounds containing sulfane sulfur atoms. The aim of the experiment was to examine changes of the non-oxidative metabolism of cysteine and the levels of cysteine and glutathione in the kidneys, heart, brain, liver and muscle of Marsh frogs (Pelophylax ridibundus) exposed to 28mg/L Pb(NO(3))(2) for 10 days. The activities of sulfurtransferases, enzymes related to the sulfane sulfur metabolism - 3-mercaptopyruvate sulfurtransfearse, γ-cystathionase and rhodanese - were detected in tissue homogenates. The activity of sulfurtransferases was much higher in the kidneys of frogs exposed to lead in comparison to control frogs, not exposed to lead. The level of sulfane sulfur remained unchanged. Similarly, the total level of cysteine did not change significantly. The total levels of glutathione and the cysteine/cystine and GSH/GSSG ratios were elevated. Thus, it seems that the exposure to lead intensified the metabolism of sulfane sulfur and glutathione synthesis in the kidneys. The results presented in this work not only confirm the participation of GSH in the detoxification of lead ions and/or products appearing in response to their presence, such as reactive oxygen species, but also indicate the involvement of sulfane sulfur and rhodanese in this process (e.g. brain). As long as the expression of enzymatic proteins (rhodanese, MPST and CST) is not examined, no answer will be provided to the question whether changes in their activity are due to differences in the concentrations of substrates and/or compounds affecting their activity or to changes in their level in response to some parameters, e.g. associated with oxidative stress.

MeSH terms

  • Animal Structures / chemistry
  • Animal Structures / drug effects
  • Animal Structures / metabolism
  • Animals
  • Cysteine / metabolism*
  • Environmental Exposure*
  • Lead / metabolism*
  • Lead / toxicity
  • Ranidae / metabolism*
  • Tissue Distribution
  • Water Pollutants, Chemical / metabolism*
  • Water Pollutants, Chemical / toxicity

Substances

  • Water Pollutants, Chemical
  • Lead
  • Cysteine