The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction

Nanoscale Res Lett. 2012 Apr 23;7(1):231. doi: 10.1186/1556-276X-7-231.

Abstract

The heterojunction effects of TiO2 nanotubes on photoconductive characteristics were investigated. For ITO/TiO2/Si diodes, the photocurrent is controlled either by the TiO2/Si heterojunction (p-n junction) or the ITO-TiO2 heterojunction (Schottky contact). In the short circuit (approximately 0 V) condition, the TiO2-Si heterojunction dominates the photocarrier transportation direction due to its larger space-charge region and potential gradient. The detailed transition process of the photocarrier direction was investigated with a time-dependent photoresponse study. The results showed that the diode transitioned from TiO2-Si heterojunction-controlled to ITO-TiO2 heterojunction-controlled as we applied biases from approximately 0 to -1 V on the ITO electrode.