Formation of CO(x)-free H2 and cup-stacked carbon nanotubes over nano-Ni dispersed single wall carbon nanohorns

Langmuir. 2012 May 15;28(19):7564-71. doi: 10.1021/la3006986. Epub 2012 May 2.

Abstract

Transitional metals (M) were dispersed on single-wall carbon nanohorns (M/SWCNHs, M = Fe, Co, Ni, Cu) by simple thermal treatment of the deposited metal nitrate without H(2) reduction. Nanometallic Ni particles on SWCNH were evidenced by high-resolution transmission electron microscopic observation and X-ray photoelectron spectroscopy. The nano-Ni dispersed on SWCNH showed the highest CH(4) decomposition activity; the activity of used transitional metals decreases in the order Ni ≫ Co > Fe ≫ Cu. On the other hand, the reaction rate over Ni/SWCNH was much larger than that over Ni/Al(2)O(3), and the former provided CO(x)-free H(2) and cup-stacked carbon nanotubes, while Ni/Al(2)O(3) produced CO(x) in addition to H(2). SWCNH was superior to Al(2)O(3) as the catalyst support of Ni for the CH(4) decomposition reaction.