Energetic selection of topology in ferredoxins

PLoS Comput Biol. 2012;8(4):e1002463. doi: 10.1371/journal.pcbi.1002463. Epub 2012 Apr 5.

Abstract

Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing an Fe₄S₄ metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple α+β fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed topology, despite the fact that the Fe₄S₄ cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating α(L),α(R)) is that of an α-sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster binding.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Binding Sites
  • Computer Simulation
  • Energy Transfer
  • Evolution, Molecular*
  • Ferredoxins / chemistry*
  • Ferredoxins / genetics
  • Ferredoxins / ultrastructure*
  • Models, Chemical*
  • Models, Genetic*
  • Models, Molecular*
  • Protein Binding
  • Protein Conformation

Substances

  • Ferredoxins