Functional tolerance in an isoreticular series of highly porous metal-organic frameworks

Dalton Trans. 2012 May 28;41(20):6277-82. doi: 10.1039/c2dt30120b. Epub 2012 Apr 11.

Abstract

A series of highly porous University of Michigan Crystalline Material (UMCM-1) type Zn-based metal-organic frameworks (MOFs) were synthesized from mono- and bi-functionalized benzenedicarboxylate (BDC) ligands. In total, 16 new functionalized UMCM-1 derivatives were obtained by a combination of pre- and postsynthetic functionalization. Through postsynthetic modification (PSM), amino-halo bifunctional MOFs were converted into amide-halo materials via solid-state acylation reactions. A series of bifunctional MOFs containing Cl, Br, and I groups revealed that PSM conversion is not affected by the size of the halide, only by the steric bulk of the reagent used in these solid-state organic transformations.