High intensity focused ultrasound with large aperture transducers: a MRI based focal point correction for tissue heterogeneity

Med Phys. 2012 Apr;39(4):1936-45. doi: 10.1118/1.3693051.

Abstract

Purpose: The risk of undesired tissue damage to thoracic cage, heart, and lung during MR guided HIFU ablations of breast cancer can be greatly reduced if a phased array transducer design with a lateral beam direction is used in combination with a large aperture. The disadvantage is an increased sensitivity to focus aberrations due to tissue heterogeneity. Here, the authors propose to restore the focal coherence by using a matched aperture phase correction, which is based on a noninvasively obtained tissue model.

Methods: The method combines high resolution MRI with ultrasound wave measurements of different tissue types to determine a phase correction, which compensates focal point aberrations caused by tissue heterogeneity. 3D segmentation of tissue is used to quantify the relative proportion of each tissue type along a line running from the center of each element of the phased array to the target focal point.

Results: For tissue types with a celerity difference of 3%, the proposed method allows to quantify the phase aberration with an accuracy of 6° ± 20° and a correlation factor R(2) = 0.95. Using the refocusing method for a complex heterogeneous phantom resulted in 95% of the maximal pressure, whereas only 70% of the maximal pressure is obtained in absence of any phase correction.

Conclusions: Since the proposed refocusing algorithm is compatible with a standard interventional preplanning and requires only a minimal amount of processing, it presents a promising approach to compensate for aberration in heterogeneous tissues such as the human breast.

MeSH terms

  • Algorithms
  • Breast Neoplasms / pathology*
  • Breast Neoplasms / surgery*
  • Equipment Design
  • Equipment Failure Analysis
  • Female
  • High-Intensity Focused Ultrasound Ablation / instrumentation*
  • High-Intensity Focused Ultrasound Ablation / methods*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Magnetic Resonance Imaging / instrumentation
  • Magnetic Resonance Imaging / methods*
  • Phantoms, Imaging
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Transducers*