Mitotic chromosome condensation in vertebrates

Exp Cell Res. 2012 Jul 15;318(12):1435-41. doi: 10.1016/j.yexcr.2012.03.017. Epub 2012 Mar 27.

Abstract

Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of proteins and their co-operation in establishing the final mitotic chromosome structure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cell Nucleus / genetics
  • Cell Nucleus / metabolism
  • Chromatin Assembly and Disassembly / genetics
  • Chromatin Assembly and Disassembly / physiology*
  • Chromosome Segregation / genetics
  • Chromosome Segregation / physiology
  • Chromosomes / genetics
  • Chromosomes / metabolism*
  • DNA Packaging / genetics
  • DNA Packaging / physiology*
  • Humans
  • Mitosis / genetics*
  • Models, Biological
  • Vertebrates / genetics*
  • Vertebrates / metabolism