Electrosynthesis of a Sc3N@I(h)-C80 methano derivative from trianionic Sc3N@I(h)-C80

J Am Chem Soc. 2012 May 2;134(17):7480-7. doi: 10.1021/ja3008038. Epub 2012 Apr 23.

Abstract

The electrosynthetic method has been used for the selective synthesis of fullerene derivatives that are otherwise not accessible by other procedures. Recent attempts to electrosynthesize Sc(3)N@I(h)-C(80) derivatives using the Sc(3)N@I(h)-C(80) dianion were unsuccessful because of its low nucleophilicity. Those results prompted us to prepare the Sc(3)N@C(80) trianion, which should be more nucleophilic and reactive with electrophilic reagents. The reaction between Sc(3)N@C(80) trianions and benzal bromide (PhCHBr(2)) was successful and yielded a methano derivative, Sc(3)N@I(h)-C(80)(CHPh) (1), in which the >CHPh addend is selectively attached to a [6,6] ring junction, as characterized by MALDI-TOF mass spectrometry and NMR and UV-vis-NIR spectroscopy. The electrochemistry of 1 was studied using cyclic voltammetry, which showed that 1 exhibits the typical irreversible cathodic behavior of pristine Sc(3)N@I(h)-C(80), resembling the behavior of other methano adducts of Sc(3)N@I(h)-C(80). The successful synthesis of endohedral metallofullerene derivatives using trianionic Sc(3)N@I(h)-C(80) and dianionic Lu(3)N@I(h)-C(80), but not dianionic Sc(3)N@I(h)-C(80), prompted us to probe the causes using theoretical calculations. The Sc(3)N@I(h)-C(80) trianion has a singly occupied molecular orbital with high spin density localized on the fullerene cage, in contrast to the highest occupied molecular orbital of the Sc(3)N@I(h)-C(80) dianion, which is mainly localized on the inside cluster. The calculations provide a clear explanation for the different reactivities observed for the dianions and trianions of these endohedral fullerenes.